
1

Peaking Attenuation of High-Gain Observers Using
Adaptive Techniques: State Estimation and

Feedback Control
Mehran Shakarami, Kasra Esfandiari, Amir Abolfazl Suratgar, and Heidar Ali Talebi

Abstract—This paper presents a new state estimation scheme
using the second-level adaptation technique and Multiple High-
Gain Observers (MHGO) for improving the transient re-
sponse and attenuating undesired peaks of High-Gain Observers
(HGOs). The proposed method considers state estimation as a
convex combination of provided information by multiple high-
gain observers. In this regard, it is shown that there exist some
constant parameters in such combination that result perfect
state estimation; then, an adaptive algorithm is employed for
estimating those parameters. The stability of the proposed scheme
and convergence of state estimation to the state of the plant
are guaranteed. In addition, MHGO is proved to be able to
provide a state estimation with smaller peaks in comparison to
a single HGO. The performance of MHGO in the presence of
measurement noise is also investigated. We consider existence
of abrupt external disturbances as well. To alleviate the effects
of those disturbances and attenuate their resulting peaking, we
present a resetting scheme. Moreover, the output feedback control
problem is considered, and it is demonstrated that a separation
principle is valid for MHGO. Finally, simulation results illustrate
that MHGO provides an accurate state estimation, and MHGO-
based controller is able to recover the performance of state
feedback controller.

Index Terms—High-gain observers, second-level adaptation,
output feedback, peaking phenomenon, measurement noise.

I. INTRODUCTION

H IGH-Gain Observers (HGOs) are able to reconstruct
system states from output measurements [1], [2]. There

exists a vast amount of literature on employing such observers
in solving different problems, such as control and state esti-
mation of nonlinear systems [3], [4] and fault detection and
isolation [5]. One factor that resulted in wide utilization of
HGOs is satisfaction of the separation principle in HGO-based
control problems, which was first introduced in [6], [7], and
its results were improved in [8]. Despite their advantages, an
inherent drawback of HGOs is existence of undesired peaks in
their transient response, known as the peaking phenomenon.
The interaction of this behaviour with system nonlinearities
could result undesired performance of the observer and even
instability of the closed-loop system [9]. To address this
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issue, we propose utilization of multiple HGOs and adaptive
techniques.

An approach for recovering the state variables of dynamical
systems is utilization of multi observers [10], [11], where
multiple observers are employed to obtain multiple estima-
tions of system states. Then, a supervisor selects one of
the observers at each time instant based on an appropriate
criteria. This method is able to provide preferable estimations;
however, it has two drawbacks. Although the structure has
multiple observers, only the obtained information from one
observer is used at each time instant. Furthermore, it needs
to employ cn observers, where n is the number of states and
c > 1, to result satisfactory performance [11]. Consequently,
the required number of observers grows exponentially by the
increase of state variables.

In adaptive systems based on a single adaptive model, the
transient response is oscillatory when the system uncertainty
is large [12]. One solution to this problem is utilization of
multiple models for identification of the plant and a supervisor
for selecting the closest model to the plant at any time
instant [13]. On the other hand, this method has similar
drawbacks to multi observers: a large number of models is
required and the available information of all models is not
efficiently employed. In [14] a novel scheme, called second-
level adaptation technique, is presented for control of Linear
Time Invariant (LTI) systems in companion form. In this
approach, switching between multiple models is eliminated
and a convex combination of all information is employed for
parameter estimation and controller synthesis. The robustness
of this method is investigated in [15]. Moreover, in different
research, this concept is applied to systems with unknown
parameters for solving problems raised in control theory
[16], [17]. Besides, the state estimation problem for nonlinear
systems is addressed in [18], [19]. In contrast, we provide
robustness analysis and address the output feedback control
problem.

In this paper, the second-level adaptation technique is
employed together with Multiple HGOs (MHGO) to recover
the state variables of a special class of nonlinear systems,
and the obtained estimation is used in an observer-based
controller. The main contributions of this paper are: I) A
new methodology using multiple HGOs and the second-
level adaptation technique is proposed for state estimation
of nonlinear systems. II) By employing the properties of the
proposed structure, the state estimation problem is converted to
a parameter and state estimation problem, and the parameters
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are estimated using a modification of the Recursive Least
Squares (RLS) algorithm. III) It is proved that the obtained
state estimation converges to the system state, and the peaking
of MHGO observation error can become smaller than a
single HGO. IV) In the presence of measurement noise, it
is shown that MHGO can provide satisfactory performance
by appropriately selection of some design parameters. V) A
re-initialization scheme is presented to mitigate peaking due
to abrupt output disturbances. VI) The observer-based control
problem is considered, and it is proved that a separation
principle is valid when MHGO state estimation is employed.

II. PROBLEM STATEMENT AND PRELIMINARIES

The considered special class of nonlinear systems and the
structure of conventional HGOs are presented in this section.

A. Problem Formulation

Consider the following nonaffine nonlinear system

ẋ = Ax+Bf(x, u)

y = Cx
(1)

where x ∈ X ⊆ Rn is the state vector, u ∈ U ⊆ R and y ∈
Y ⊆ R denote the input and output of the system, respectively,
and the n × n matrix A, the n × 1 vector B, and the 1 × n
vector C are defined as follows

A =


0 1 · · · 0
...

. . . . . .
...

0 · · · 0 1
0 · · · · · · 0

 , B =


0
...
0
1

 , CT =


1
0
...
0


In addition, f : X×U → R is a nonlinear function which is

locally Lipschitz in its arguments over the domain of interest,
and f(0, 0) = 0; hence, the origin is an equilibrium point of
the system [8].

Similar to [20], we assume that f(·, ·) is Lipschitz on X×U .
For satisfaction of this assumption, the set X × U will be
considered to be compact.

B. High-Gain Observers

The structure of a single HGO is as follows [2], [20]

˙̂x = Ax̂+Bf0(x̂, u) +H(y − Cx̂) (2)

where x̂ is the state estimation vector, f0(·) is a saturated
version of f(·) and agrees with that on X ×U . Also, ε ∈ (0, 1]
and H = [κ1

ε ,
κ2

ε2 , · · · ,
κn
εn ]T , where κis are chosen such that

all the eigenvalues of the matrix A − HC have negative
real parts, i.e., A − HC is Hurwitz. For investigating the
convergence of x̂ to x, let x̃ = x − x̂ and subtract (2) from
(1) to obtain

˙̃x = A0x̃+B[f(x, u)− f0(x̂, u)] (3)

where A0 = A − HC. As proved in [2], [20], there exists
ε∗ > 0 such that for every 0 < ε ≤ ε∗ and any admissible
x ∈ X and u ∈ U , the effect of f(x, u) − f0(x̂, u) on x̃ is
rejected, and the state estimation converges to the state of the
plant, i.e., limt→∞ x̃(t) = 0.

Throughout the paper, we need the following lemma.
Lemma 1 ( [21]): Let a1, a2, · · · , am ∈ L where L is a

linear space. The intersection of all convex sets in L containing
ai is called the convex hull K of {ai(i = 1, 2, · · · ,m)} and
any element of which, a′, can be expressed as a′ =

∑m
i=1 βiai

where βi ∈ [0, 1] is a constant satisfying
∑m
i=1 βi = 1.

III. THE MAIN RESULTS

In this section, the structure of the proposed observer,
MHGO, is presented, and its stability, performance, and ro-
bustness to measurement noise are investigated in detail. To
counteract peaking resulted from sudden output disturbances, a
modification of MHGO with resetting is also introduced. Fur-
thermore, the output feedback control problem is addressed.

A. The Proposed MHGO

The proposed method reconstructs the state of the plant
at any given time instant using full knowledge provided by
multiple observers. In this regard, N HGOs with the structure
of (4) are considered

˙̂xi(Λ, t) = Ax̂i(Λ, t) +H(y(t)− Cx̂i(Λ, t))

+Bf0(

N∑
i=1

αix̂i(Λ, t), u(t)), i = 1, · · · , N
(4)

where x̂i denotes the state estimation from the ith observer
with x̂i(Λ, 0) = x̂i(0), αi ∈ [0, 1] is a constant term satisfying∑N
i=1 αi = 1, and Λ =

[
α1 α2 · · · αN

]T
. The notation

x̂i(Λ, t) is employed to show that x̂is are functions of αis.
The final estimation is considered as a combination of N
estimations as follows

x̂o(t) =
N∑
i=1

αix̂i(Λ, t) (5)

Considering (4), each observer utilizes state estimations
provided by the other observers, and the final estimation is a
combination of the individual observations (refer to (5)). This
approach, employing multiple observations for calculation
of the final estimation, assists in having a more accurate
estimation. Nevertheless, we need to prove that the proposed
observation structure (4) and (5) can estimate plant states,
accurately. Toward this end, the following lemma is presented.

Lemma 2: Consider nonlinear system (1), N high-gain
observers (4), equation (5), and let x ∈ X and u ∈ U . If
the initial conditions of HGOs (4) are selected such that x(0)
is in the convex hull K of x̂i(0), then there exist some α∗i s
such that for αi = α∗i , the equality of x(t) = x̂o(t) holds for
all t ≥ 0.
Proof. At t = 0, by employing Lemma 1, it can be seen
that since x̂i(0)s are chosen such that x(0) is in the convex
hull K of {x̂i(0)(i = 1, 2, · · · , N)}, some α∗i s exist such that
x(0) =

∑N
i=1 α

∗
i x̂i(0), i.e., x̃o(0) = 0 where x̃o = x − x̂o

is the state estimation error. Now to provide the analysis for
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t > 0, it is required to obtain the observation error dynamics.
Subtracting (4) from (1), results in

˙̃xi(Λ, t) = A0x̃i(Λ, t)

+B[f(x(t), u(t))− f0(
N∑
i=1

αix̂i(Λ, t), u(t))]
(6)

where A0 = A−HC and x̃i = x− x̂i denotes the observation
error corresponding to the ith observer. In order to obtain the
error dynamics of MHGO, one can use (5) and the fact that∑N
i=1 αi = 1 to get x̃o(t) =

∑N
i=1 αix̃i(Λ, t). Therefore,

noting that αis are constant, we use (6) and obtain the time
derivative of x̃o(t) as follows

˙̃xo = A0x̃o +B[f(x, u)− f0(x̂o, u)] (7)

Since f0 agrees with f on X × U , we conclude that x̃o = 0
is an equilibrium point of the preceding equation. Besides, as
stated before, choosing αi = α∗i results in x̃o(0) = 0; and
therefore, x̃o(t) = 0 for all t ≥ 0. �

The following assumption is a result of Lemma 2.
Assumption 1: The initial conditions of HGOs (4), x̂i(0)s,

are chosen such that the initial condition of plant (1), x(0), is
in their convex hull K.

Remark 1: From convex analysis, we know that since
x(0) ∈ Rn, at least N = n + 1 observers are required for
satisfaction of Assumption 1. In addition, one can choose
x̂i(0)s such that X ⊂ K to guarantee x(0) ∈ K. It is also
worth noting that in comparison to multi observers that need
cn observers with c > 1, MHGO requires fewer observers,
especially when n is a large number.

From Lemma 2 it can be concluded that there exist some
unknown constant α∗i s that result in perfect state estimation.
Therefore, the following equation can be obtained

x(t) =
N∑
i=1

α∗i x̂i(Λ
∗, t), ∀t ≥ 0 (8)

where Λ∗ =
[
α∗1 α∗2 · · · α∗N

]T
. Although choosing αis

identical to α∗i s results in perfect state estimation, such a selec-
tion is impossible due to the fact that α∗i s are unknown. Thus,
deriving an appropriate estimation of α∗i is required. In other
words, the understudy state estimation problem is transformed
into a combination of state and parameter estimation problem.

In order to estimate α∗i s, let us use the fact that
∑N
i=1 α

∗
i =

1 and rearrange (8) to obtain
N∑
i=1

α∗i x̃i(Λ
∗, t) = 0 (9)

By considering α∗N = 1 −
∑N−1
i=1 α∗i and defining θ∗ =[

α∗1 α∗2 · · · α∗N−1

]T
, we rewrite (9) as follows

N−1∑
i=1

α∗i (x̃i(θ
∗, t)− x̃N (θ∗, t)) = −x̃N (θ∗, t) (10)

On the left hand side of (10), x̃i(θ∗, t)− x̃N (θ∗, t) is equal to
x̂N (θ∗, t)− x̂i(θ∗, t). Moreover, one can use (4) and get

˙̂xN (θ∗, t)− ˙̂xi(θ
∗, t) = A0(x̂N (θ∗, t)− x̂i(θ∗, t))

It can be seen that x̂N (θ∗, t)− x̂i(θ∗, t) is the state of an LTI
system, and in turn, it does not depend on θ∗; thus if a matrix
M is defined such that its ith column is x̂N (θ∗, t)− x̂i(θ∗, t) ,
it is independent of θ∗, and one can write the regression form
of (10) as follows

M(t)θ∗ = −x̃N (θ∗, t) (11)

Although the matrix M(t) is completely known, the right
hand side of (11) is composed of x and x̂N (θ∗) which are
unknown. Therefore, one cannot obtain an estimation of θ∗

using conventional adaptive approaches merely based on (11).
To overcome the aforementioned difficulty, let us premulti-

ply (11) by C, and get

CM(t)θ∗ = −ỹN (θ∗, t)

where ỹN (θ∗, t) = y(t) − Cx̂N (θ∗, t). The right hand side
of the preceding equation is still unknown since θ∗ is not
available, i.e., x̂N (θ∗, t) is unavailable. Therefore, the RLS
algorithm which requires ỹN (θ∗, t) for estimating θ∗ cannot be
utilized. Nonetheless, to find an estimation of θ∗, we propose
employing a modified version of the RLS algorithm as follows

˙̂
θ(t) = −P (t)M(t)TCT (ỹN (θ̂, t) + CM(t)θ̂(t))

Ṗ (t) = −P (t)M(t)TCTCM(t)P (t)
(12)

where θ̂ represents an approximation of θ∗, ỹN (θ̂, t) = y(t)−
Cx̂N (θ̂, t), θ̂(0) = θ̂0, and P (0) = γI with the positive
constant γ and the identity matrix I . Note that the modified
RLS algorithm uses ỹN (θ̂, t) instead of ỹN (θ∗, t), and it will
be shown later that this structure is appropriate for obtaining
an accurate state estimation. It is worth noting that since
M(t) is independent of θ∗, its ith column is considered as
x̂N (θ̂, t)− x̂i(θ̂, t) that can be easily obtained.

Once θ̂ is calculated, it is employed for state estimation as
˙̂xi(θ̂) = Ax̂i(θ̂) +H(y − Cx̂i(θ̂)) +Bf0(x̂o, u)

x̂o =

N−1∑
i=1

α̂ix̂i(θ̂) + (1−
N−1∑
i=1

α̂i)x̂N (θ̂)
(13)

Therefore, the state estimation is obtained using two intercon-
nected systems (12) and (13).

B. Performance Investigation

This section includes performance investigation of the pro-
posed observation scheme, i.e., the interconnected systems
(12) and (13). First, the stability and convergence of MHGO
are shown in the following theorem; afterwards, we investi-
gate that whether it can provide a better state estimation in
comparison to a single HGO.

Theorem 1: Consider system (1), N high-gain observers
(13), and the modified RLS algorithm (12), and let x ∈ X
and u ∈ U . Then there exists ε∗ > 0 such that for 0 < ε ≤ ε∗,
θ̂ and P are bounded, x̂is are uniformly ultimately bounded,
and x̂o converges to x.

Proof. Consider the scaled estimation error η(i) :=
x(i)−x̂o(i)
εn−i where x(i) and x̂o(i) represent the ith elements of

x and x̂o, respectively. As a result, one can obtain

D(ε)η = x− x̂o (14)
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where η = [η(1), · · · , η(n)]
T and D(ε) = diag(εn−1, · · · , ε, 1).

By using
∑N
i=1 α̂i = 1, the scaled error (14), and the fact

that CD(ε) = εn−1C, the dynamics of MHGO, including the
modified RLS algorithm (12) and N high-gain observers (13),
can be rewritten as follows

η =
N−1∑
i=1

α̂iηi(θ̂) + (1−
N−1∑
i=1

α̂i)ηN (θ̂) (15)

˙̂
θ = −ε2(n−1)PMT

1 C
TC(ηN (θ̂) +M1θ̂) (16)

Ṗ = −ε2(n−1)PMT
1 C

TCM1P (17)

εη̇i(θ̂) = A1ηi(θ̂) + εB[f(x, u)− f0(x−D(ε)η, u)] (18)

where D(ε)ηi = x − x̂i is the scaled state estimation error
for the ith observer, the ith column of M1 is ηi(θ̂) − ηN (θ̂),
and A1 = εD(ε)−1A0D(ε). It is worth noting that A1 is a
Hurwitz matrix since κis are chosen such that A0 is Hurwitz.

Since 0 ≤ P (t) and Ṗ (t) ≤ 0, it can be seen that P (t) ≤
P (0) = γI and P (t) is bounded. Moreover, using the fact
that P (t) is symmetric, we have ‖P (t)‖2 = λmax(P (t))2;
thus, ‖P (t)‖ ≤ γ.

We use the definition of M1 and rewrite the regression form
of η from (15) as follows

η = M1θ̂ + ηN (θ̂) (19)

Substituting the preceding equation into (16) results in

˙̂
θ = −ε2(n−1)PMT

1 C
TCη (20)

On the other hand, by using (18) and the fact that the ith
column of M1 is ηi(θ̂)− ηN (θ̂), we have

εṀ1 = A1M1 (21)

Now by using (18), (20), and (21), the derivative of (19) is

η̇ =
1

ε
A1η − ε2(n−1)M1PM

T
1 C

TCη

+B[f(x, u)− f0(x−D(ε)η, u)]
(22)

In order to investigate the convergence of x̂o(t) to x(t), a
Lyapunov function candidate V (η) = ηTP1η is considered
where P1 is the positive definite matrix satisfying AT1 P1 +
P1A1 = −I . Therefore, the derivate of V (η) can be obtained
using (22) as follows

V̇ (η) = −1

ε
ηT η − 2ε2(n−1)ηTP1M1PM

T
1 C

TCη

+ 2ηTP1B[f(x, u)− f0(x−D(ε)η, u)]
(23)

Employing ‖D(ε)‖ = 1, the fact that f is Lipschitz on X ×U
and f0 is a saturated version of which and agrees with that on
this domain, we conclude that

‖f(x, u)−f0(x−D(ε)η, u)‖ ≤ L1‖η‖,∀(x, u) ∈ X×U (24)

where L1 > 0 is a Lipschitz constant. One can use (23), (24),
and ‖B‖ = 1 to express V̇ (η) as

V̇ (η) ≤ −1

ε
‖η‖2 + 2ε2(n−1)‖P1‖‖M1‖2‖P‖‖η‖2

+ 2L1‖P1‖‖η‖2

By defining ε∗ := 1/(4L1‖P1‖) and choosing 0 < ε ≤ ε∗, we
have

V̇ (η) ≤ − 1

2ε
‖η‖2 + 2ε2(n−1)‖P1‖‖M1‖2‖P‖‖η‖2 (25)

As it was shown before, ‖P (t)‖ ≤ γ. Moreover, from (21), we
know that M1(t) = e

1
εA1tM1(0). Since A1 is a Hurwitz ma-

trix, a Lyapunov function candidate W = Tr[e
1
εA

T
1 tP1e

1
εA1t]

can be considered to obtain Ẇ = − 1
ε Tr[e

1
εA

T
1 te

1
εA1t]. Fur-

thermore, we have

λmin(P1) Tr[e
1
εA

T
1 te

1
εA1t] ≤W ≤ λmax(P1) Tr[e

1
εA

T
1 te

1
εA1t]

(26)
where λmin(P1) and λmax(P1) are the smallest and largest
eigenvalues of P1, respectively. By using the above equation,
one has Ẇ ≤ − 1

ελmax(P1)W , and in turn,

W (t) ≤ e−
1

ελmax(P1)
t
W (0) (27)

Now, one can consider the following inequalities

‖e 1
εA1t‖2 ≤ Tr[e

1
εA

T
1 te

1
εA1t] ≤ n‖e 1

εA1t‖2

Thus, (26), (27), and the above equation can be used to get

‖e 1
εA1t‖ ≤ ke−λε t (28)

with k =
√
nλmax(P1)/λmin(P1) and λ = 1/(2λmax(P1)).

Using (28), we have ‖M1(t)‖ ≤ k‖M1(0)‖e−λε t. Then, the
obtained upper bounds of ‖P (t)‖ and ‖M1(t)‖ and (25) can
be utilized to get V̇ (η) ≤ − 1

2ε‖η‖
2 + ρe−2λε t‖η‖2 with

ρ = 2k2γε2(n−1)‖P1‖‖M1(0)‖2. Note that the following
inequality always holds.

λmin(P1)‖η‖2 ≤ V (η) ≤ λmax(P1)‖η‖2 (29)

Thus, (29) can be used to obtain

V̇ (η) ≤ (− 1

2ελmax(P1)
+

1

λmin(P1)
ρe−2λε t)V (η)

By solving the preceding equation, we have

V (t) ≤ e−
1

2ελmax(P1)
t
e

ε
2λλmin(P1)

ρ(1−e−2λ
ε
t)
V (0)

Considering 1−e−2λε t ≤ 1, the preceding equation is rewritten
as follows

V (t) ≤ k1e
− 1

2ελmax(P1)
t
V (0) (30)

with k1 = e
ε

2λλmin(P1)
ρ. As a result, limt→∞ η(t) = 0, and

x̂o(t) converges to x(t).
To show that θ̂ is bounded, (20) is used to get

θ̂(t) = θ̂0 − ε2(n−1)

∫ t

0

P (τ)MT
1 (τ)CTCη(τ)dτ (31)

Furthermore, one can get the following inequality by employ-
ing (29) and (30)

‖η(t)‖ ≤ k2e
− 1

4ελmax(P1)
t‖η(0)‖ (32)

where k2 =
√
k1λmax(P1)/λmin(P1). By utilizing the preced-

ing equation, the upper bounds of ‖P (t)‖ and ‖M1(t)‖, and
(31), one can get ‖θ̂(t)‖ ≤ ‖θ̂0‖+ k3

∫ t
0
e
−(λε + 1

4ελmax(P1)
)τ
dτ

with k3 = kk2γε
2(n−1)‖M1(0)‖‖η(0)‖. We conclude from

‖θ̂(t)‖ ≤ ‖θ̂0‖+ k3
4ελmax(P1)

4λλmax(P1)+1 that θ̂ is bounded.
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To show that x̂is are bounded, using the boundedness of x,
we need to show that ηis are bounded. For that, a Lyapunov
function candidate Vi(ηi) = ηTi P1ηi and (18) are used to get
V̇i(ηi) ≤ −1

ε ‖ηi‖
2 + 2L1‖P1‖‖ηi‖‖η‖. By using (32), we

concluded that V̇i(ηi) < 0 for ‖ηi‖ > 2εL1k2‖P1‖‖η(0)‖,
and in turn, ηis are uniformly ultimately bounded. �

From Theorem 1, we see that the proposed observer is stable
and its estimation converges to system state. On the other
hand, the main purpose of the proposed observer is obtaining
a better estimation in comparison to a single HGO. In order
to investigate that, the analysis of estimation error of MHGO
and a single HGO needs to be performed. Toward this end, it
is required to consider the following assumption.

Assumption 2: The initial conditions of HGOs (4) are chosen
such that the matrix M(0)M(0)T has full rank.

Remark 2: Since M(0) is n × (N − 1) and N − 1 ≥ n,
Assumption 2 is not restrictive.

The performance analysis of MHGO and its comparison to
a single HGO are performed in the following lemma.

Lemma 3: Let conditions of Theorem 1 be satisfied and
Assumptions 1 and 2 hold. If γ := ξ/ε2(n−1) with the positive
constant ξ, then,

(i) there exist ξ∗1 > 0 and ε∗1 > 0 such that by choosing ξ >
ξ∗1 and 0 < ε < ε∗1, the state estimation errors of MHGO
and a single HGO can peak to O(‖x̃o(0)‖/(ξεn−1)) and
O(‖x̃(0)‖/εn−1), respectively, where x̃o(0) = x̃(0) are
the initial estimation errors.

(ii) if N = n+1, there exist ξ∗2 > 0 and ε∗2 > 0 such that by
choosing ξ > ξ∗2 and 0 < ε < ε∗2, the norm of parameter
estimation error θ̃ = θ̂−θ∗ is less or equal to O(‖θ̃0‖/ξ)
where θ̃0 is the initial parameter estimation error.

Proof. See the Appendix. �
It can be seen from Lemma 3 that by choosing a large

enough ξ, which is equivalent to taking γ large, the peak of
MHGO state estimation error can become arbitrary smaller
than the peak of a single HGO estimation error. As a result,
the proposed MHGO may provide state estimations with more
preferable transient response in comparison to a single HGO.
Other approaches for attenuation of peaking are using hybrid
modifications and projection [22] or introducing saturation into
a low-power modification of HGO [23]. In contrast to [22],
the considered plant is more general and is not limited to
interconnected second order plants. Also, peaking in [23] can
grow to O(1/ε); however, for the MHGO, peaking can become
arbitrary small. It is also worth noting that since α∗i ∈ [0, 1],
one could employ projection to compel α̂i ∈ [0, 1], and in turn,
would need to appropriately modify the preceding analysis.

Remark 3: One can see from Theorem 1 and Lemma 3 that
Assumptions 1 and 2 are not required for the convergence of
state estimation. However, if the initial conditions of HGOs are
selected such that they are held, by selecting a large enough
γ, the proposed observation scheme can provide better state
estimations than a single HGO.

Remark 4: It can be seen from the presented analysis that
x(0) ∈ K is required for the existence of θ∗ which satisfies
x(0) = M(0)θ∗ + x̂N (0). Therefore, Assumption 1 can be
relaxed into selection of x̂i(0) such that M(0) is full row
rank, i.e., x(0)− x̂N (0) ∈ Range(M(0)).

C. The Effect of Measurement Noise

In the theory of HGOs, it is well-known that there exists a
trade-off between the speed of state estimation and sensitivity
to noise. In [24], it is shown that when there exists measure-
ment noise, the state estimation error of HGO converges to an
ultimate bound O(µ/εn−1) where µ is an upper bound of the
norm of noise. Consequently, even though choosing smaller
ε results in faster convergence of state estimation, it produces
bigger transient peaks and bigger ultimate estimation error
bound. In this section, we assume that the output measurement
is contaminated by noise as follows

y = Cx+ ν (33)

where ν is the bounded measurement noise such that ‖ν‖ ≤ µ.
The goal is to investigate the performance of MHGO in the
presence of noise; hence, the following lemma is presented.

Lemma 4: Let conditions of Theorem 1 be satisfied and
the output of plant be contaminated by noise as (33). Then,
there exist positive constants ε∗, k1, k2, k3, and λ such that
by choosing 0 < ε ≤ ε∗, we have

‖x̃o(t)‖ ≤
k1

εn−1
e−

λ
2ε t‖x̃o(0)‖+ k2γε

n(e−
λ
2ε t − e−2λε t)µ

+
k3

εn−1
(1− e− λ

2ε t)µ (34)

where x̃o is the state estimation error of MHGO and ‖ν‖ ≤ µ.
Proof. See the Appendix. �

From (34), it is obvious that the ultimate estimation error
bound of MHGO is O(µ/εn−1), which is the same as a single
HGO, obtained in [24]. On the other hand, the measurement
noise and initial estimation error have linear effects on the
right hand side of (34). As a result, even though choosing a
large γ reduces the effect of initial estimation error and the
peaking phenomenon (as it was shown in Lemma 3), it will
also increase the transient effect of noise. In other words, there
is a trade-off for choosing γ. To reduce the effect of x̃o(0),
we need to choose a large γ, and for mitigating the effect of
noise, γ should be set small enough. One method for selecting
the design parameters ε and γ is to choose a large ε to reduce
the ultimate estimation error bound and set γ large enough to
improve the transient response.

D. Re-initialization Against Abrupt Disturbances

In the proposed observation scheme, all of the individ-
ual observers converge to each other in the long run, i.e.,
M1(t) → 0 as t → ∞. This means that after the transient
response, x̂o is equal to a single HGO’s estimation. From
a practical point of view, abrupt disturbances may occur at
the output of the plant after the transient response. In this
case, as shown in the previous section, MHGO is still stable;
however, it is not able to improve the transient response related
to the disturbances since M(t) has already become small. For
addressing this issue, we propose a re-initialization scheme to
enhance transient response resulting from abrupt disturbances.

To achieve the mentioned goals, we reset the state estimation
of the ith observer to its initial value, i.e., x̂i(tk) = x̂i(0)
where tk is the time instant of the kth re-initialization; thus,
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we have M(tk) = M(0). For the RLS algorithm, P (tk) = γI
can be selected; however, if we choose θ̂(tk) = θ̂0, the state
estimation x̂o will reset to the initial value x̂o(0) and this will
cause discontinuities in x̂o. To avoid that, θ̂(tk) should be
chosen such that x̂o(tk) = x̂o(t

−
k ) where t−k is the time instant

before the kth resetting, i.e., M(0)θ̂(tk) + x̂N (0) = x̂o(t
−
k ).

Considering this discussion and Assumption 2, the following
re-initialization scheme is presented

x̂i(tk) = x̂i(0), i = 1, · · · , N
P (tk) = γI

θ̂(tk) = M(0)T (M(0)M(0)T )−1(x̂o(t
−
k )− x̂N (0))

(35)

The following lemma analyzes the performance of MHGO
under the presented re-initialization scheme.

Lemma 5: Let conditions of Theorem 1 be satisfied and
Assumption 2 holds. Also, there exists abrupt output distur-
bance ν given by (33) which is bounded as ‖ν‖ ≤ µ. Then,
there exist positive constants ε∗, k1, k2, k3, and λ such that
by choosing 0 < ε ≤ ε∗, the state estimation error of MHGO
with resetting (35) satisfies

‖x̃o(t)‖ ≤
k1

εn−1
e−

λ
2ε t‖x̃o(0)‖

+

k−1∑
j=1

e−
λ
2ε (t−tj)

[
k2γε

n(e−
λ
2ε (tj−tj−1) − e−2λε (tj−tj−1))

+
k3

εn−1
(1− e− λ

2ε (tj−tj−1))
]
µ

+ k2γε
n(e−

λ
2ε (t−tk−1) − e−2λε (t−tk−1))µ

+
k3

εn−1
(1− e− λ

2ε (t−tk−1))µ

(36)
where t ∈ [tk−1, tk), tj is the time instant of the jth resetting
for j = 0, 1, · · · , k − 1, and t0 = 0.
Proof. See the Appendix. �

Since the time instant of disturbance occurrence is unknown,
it is required to consider a scheme for determining the resetting
time. In this regard, the e−

δ
ε t-weighed L2 norm of the output

estimation error can be utilized as a monitoring signal, i.e.,
ϑ(t) =

∫ t
0
e−

δ
ε (t−τ)(y(τ) − Cx̂o(τ))2dτ with the design

parameter δ > 0 [25]. This signal can be implemented using
a linear filter as follows

ϑ̇ = −δ
ε
ϑ+ (y − Cx̂o)2, ϑ(0) = 0 (37)

As a result, tk is defined as the time at which ϑ(t) ≥ ϑ̄ where
ϑ̄ > 0 is a design parameter, and we choose ϑ(tk) = 0 to re-
initialize the filter at the resetting time. It is worth noting that
the design parameters δ and ϑ̄ should be selected proportionate
to the application to prevent false resetting signals (due to very
small ϑ̄ or very large δ) or missing out disturbance occurrences
(for very large or small ϑ̄ and δ, respectively).

Remark 5: We need to assure that the summation in (36)
is bounded even if the number of resettings tends to infinity.
Let the minimum switching time interval be T = min{tj −
tj−1} for j = 0, 1, · · · , k− 1, then t ∈ [tk−1, tk) can be used
to get t − tj ≥ (k − 1 − j)T . By noting e−

λ
2ε (tj−tj−1) −

e−2λε (tj−tj−1) ≤ 0.5 and 1 − e−
λ
2ε (tj−tj−1) ≤ 1, it is only

required to investigate lim
k→∞

∑k−1
j=1 e

− λ
2ε (t−tj), which is

lim
k→∞

k−1∑
j=1

e−
λ
2ε (t−tj) ≤ lim

k→∞

k−1∑
j=1

e−
λ
2ε (k−1−j)T

= lim
k→∞

k−2∑
j=0

(
e−

λ
2εT
)j

The above summation converges to a bounded value for all
T > 0, which is always satisfied based on its definition. It is
worth noting that the switching excludes the Zeno behavior,
which means that a subsequence of switching times tjk such
that limk→∞(tjk − tjk−1

) = 0 does not occur. To show this,
considering the structure of filter (37), it suffices the input
signal y−Cx̂o to be bounded in finite time. This is guaranteed
as x belongs to the compact set X , the disturbance ν is
bounded, and x̂o is continuous.

E. Control

This section considers the output feedback control problem
using the state estimation of MHGO. The proposed control
strategy is inspired by the following theorem which addresses
the output feedback control problem using a single HGO.

Theorem 2 ( [2]): Let u = ω(x) with the locally Lipschitz
function ω(x), which is globally bounded and ω(0) = 0, to
be a state feedback controller that asymptotically stabilizes the
origin of (1) with the region of attraction Ω. Now, consider the
output feedback controller u = ω(x̂) where x̂ is generated by
the single HGO (2). Let S be any compact set in the interior
of Ω and Q be any compact subset of Rn. Then,

(i) there exists ε∗1 > 0 such that, for every 0 < ε ≤ ε∗1, the
solution (x(t), x̂(t)) of the closed-loop system, starting
in S ×Q, is bounded for all t ≥ 0.

(ii) given any µ > 0, there exist ε∗2 > 0 and T2 > 0, both
dependent on µ, such that, for every 0 < ε ≤ ε∗2, the
solutions of the closed-loop system, starting in S × Q,
satisfy ‖x(t)‖ ≤ µ and ‖x̂(t)‖ ≤ µ for all t ≥ T2.

(iii) given any µ > 0, there exists ε∗3 > 0, dependent on µ,
such that, for every 0 < ε ≤ ε∗3, the solutions of the
closed-loop system, starting in S × Q, satisfy ‖x(t) −
xr(t)‖ ≤ µ for all t ≥ 0, where xr(t) is the solution of
system (1) under u = ω(x), starting at x(0).

(iv) if the origin of system (1) under u = ω(x) is exponen-
tially stable and f(x, u) is continuously differentiable in
some neighborhood of x = 0, then there exists ε∗4 > 0
such that, for every 0 < ε ≤ ε∗4, the origin of the closed-
loop system is exponentially stable and S×Q is a subset
of its region of attraction.

Theorem 2 posits that by choosing a sufficiently small ε, the
output feedback controller that employs x̂ from (2), recovers
the performance of the state feedback controller. In the sequel,
a theorem corresponding to the performance of the observer-
based control scheme that utilizes state estimation obtained
from the proposed MHGO, is provided.
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Theorem 3: Let conditions of Theorem 2 be satisfied, and
consider the proceeding MHGO

˙̂xi(θ̂) = Ax̂i(θ̂) +H(y − Cx̂i(θ̂)) +Bf0(x̂o, ω(x̂o))

x̂o =
N−1∑
i=1

α̂ix̂i(θ̂) + (1−
N−1∑
i=1

α̂i)x̂N (θ̂)

where i = 1, · · · , N and x̂o denotes the reconstructed system
state; moreover, θ̂ =

[
α̂1 · · · α̂N−1

]T
is obtained from

the modified RLS algorithm (12). Then, the output feedback
controller u = ω(x̂o) recovers the performance of the state
feedback controller, in the sense of Theorem 2. Moreover, θ̂
and P are bounded and x̂is are uniformly ultimately bounded.
Proof. By using the scaled estimation error as defined in
(14) and the fact that CD(ε) = εn−1C, one can rewrite the
dynamics of the overall closed-loop system as follows

ẋ = Ax+Bf(x, ω(x−D(ε)η)) (38)

η = M1θ̂ + ηN (θ̂) (39)
˙̂
θ = −ε2(n−1)PMT

1 C
TCη (40)

Ṗ = −ε2(n−1)PMT
1 C

TCM1P (41)
εη̇i = A1ηi + εB∆(x,D(ε)η) (42)

where A1 = εD(ε)−1(A −HC)D(ε), the ith column of M1

is ηi(θ̂) − ηN (θ̂), and ∆(x,D(ε)η) = f(x, ω(x −D(ε)η)) −
f0(x−D(ε)η, ω(x−D(ε)η)).

Similar to the proof of Theorem 1, since Ṗ ≤ 0 and P ≥ 0,
the matrix P is bounded and ‖P‖ ≤ γ. In addition, one can
consider (39) and use (21), (40), and (42) to obtain

εη̇ = A1η − ε2n−1M1PM
T
1 C

TCη + εB∆(x,D(ε)η) (43)

It can be seen that (38) and (43) construct a singular pertur-
bation model. Therefore, according to the perturbation theory,
the analysis is divided into two stages: finding the reduced
model and finding the boundary-layer model. To obtain the
reduced system, it is required to set ε = 0 in (38) and
(43). Since A1 is a Hurwitz matrix, it has full rank. Thus
by setting ε = 0 and performing some basic manipulations,
one can get ẋ = Ax + Bf(x, ω(x)). It is obvious that
the reduced system is the closed-loop system under the state
feedback. Thus it is asymptotically stable with the region of
attraction Ω. According to the converse Lyapanouv’s theorem
[2], there exists a Lyapanouv function V (x) and a positive
definite function U(x), defined for x ∈ Ω, such that

V (x)→∞ as x→ ∂Ω

∂V

∂x
[Ax+Bf(x, ω(x))] ≤ −U(x),∀x ∈ Ω

(44)

and for any c > 0, Ωc = {V (x) ≤ c} is a compact subset
of Ω. Define S as a compact set in the interior of Ω, then
S ⊂ Ωc ⊂ Ω.

In the next step, to obtain the boundary-layer model, the
change of time variable τ = t/ε is employed. Then, by setting
ε = 0, the model is derived as dη

dτ = A1η. Since all the eigen-
values of A1 have negative real parts, there exists a Lyapunov
function W (η) = ηTP1η such that ∂W

∂η A1η = −‖η‖2; where
the matrix P1 satisfies A1

TP1 + P1A1 = −I .

Let Σ = {W (η) ≤ ρ2} and Π = Ωc × Σ. The proof of (i)
is divided in two steps. In the first step, it is shown that there
exist ε1 > 0 such that by selecting 0 < ε ≤ ε1, the set Π is
a positively invariant set. On the other hand, it is not possible
to guarantee that η(0) ∈ Σ. To address this challenge, in the
second step, it is shown that there exists ε2 > 0 such that
for 0 < ε ≤ ε2 and (x(0), x̂o(0)) ∈ S × Q, the trajectory
(x(t), η(t)) enters Π in finite time.

For the first step, we can use (38) and consider the derivative
of V as follows

V̇ =
∂V

∂x
[Ax+Bf(x, ω(x−Dη))] (45)

Since f and ω are locally Lipschitz functions, we can consider
the following inequality for small enough ε

‖f(x, ω(x−Dη))− f(x, ω(x))‖ ≤ k1‖η‖,∀(x, η) ∈ Π (46)

where k1 is a Lipschitz constant. Moreover, over Ωc, we
have ‖∂V∂x ‖ ≤ k2, and in turn, by adding and subtracting
∂V
∂xBf(x, ω(x)) to the right hand side of (45) and using (44)
and (46), one has

V̇ ≤ −U(x) + k1k2‖η‖ (47)

In the set Π we have W (η) ≤ ρ2, and consequently
‖η‖ ≤ ρ/

√
λmin(P1). Therefore, one can rewrite (47)

as V̇ ≤ −U(x) + k1k2
ρ√

λmin(P1)
. By selecting ρ =

β/(k1k2
1√

λmin(P1)
) where β = minx∈∂Ωc U(x), it can be

shown that V̇ ≤ 0.
For W (η), by using (43) we have

Ẇ = −1

ε
ηT η − 2ε2(n−1)ηTP1M1PM

T
1 C

TCη

+ 2ηTP1B∆(x,D(ε)η)

Now ‖P (t)‖ ≤ γ, ‖M1(t)‖ ≤ k‖M1(0)‖, and the fact that
‖∆(x,D(ε)η)‖ ≤ L1‖η‖ for (x, η) ∈ Π and small enough ε
can be employed to get

Ẇ ≤ (−1

ε
+ ε2(n−1)k3 + k4)‖η‖2

where k3 = 2k2γ‖P1‖‖M1(0)‖2 and k4 = 2L1‖P1‖. Conse-
quently, there exists ε1 > 0 small enough such that for any
0 < ε ≤ ε1 one has ε2(n−1)k3 + k4 ≤ 1

2ε , and in turn, we get

Ẇ ≤ − 1

2ε
‖η‖2 < 0 (48)

Therefore, for all (x, η) ∈ Π, we have V̇ ≤ 0 and Ẇ < 0,
i.e., Π is a positively invariant set.

Now, in the second step, it is considered that (x(0), x̂o(0)) ∈
S ×Q. Since f(x, ω(x−Dη)) is locally Lipschitz and ω(x−
Dη) is a globally bounded function of x−Dη, for all x ∈ Ωc
we have

‖Ax+Bf(x, ω((x−Dη)))‖ ≤ k5 (49)

where k5 is non-negative and independent of ε. Therefore, by
using (38), (49), and the fact that x(0) is in the interior of Ωc,
we have ‖

∫ t
0
ẋ(τ)dτ‖ ≤

∫ t
0
‖ẋ(τ)‖dτ ≤ k5t, and in turn, it

can be seen that for x(t) ∈ Ωc, it is valid to say

‖x(t)− x(0)‖ ≤ k5t (50)
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This means that there exists T0 > 0, independent of ε, such
that x(t) is in the interior of Ωc for all t ∈ [0, T0]. During
this time interval, by choosing 0 < ε ≤ ε1, the equation (48)
is satisfied. Thus, it can be shown that Ẇ ≤ − 1

2ελmax(P1)W ;
and consequently, we have

W (t) ≤ e−
1

2ελmax(P1)
t
W (0) (51)

Now by defining T (ε) = 2ελmax(P1) ln(W (0)
ρ2 ), we see that

there exists ε2 > 0 such that the inequality T (ε) ≤ 1
2T0 is

satisfied for any 0 < ε ≤ ε2. It should be noted that such a
selection exists since if ε tends to zero, T (ε) tends to zero
too. Therefore, by selecting 0 < ε ≤ ε2 it can be guaranteed
that W (T (ε)) ≤ ρ2. In other words, η(t) enters Σ before x(t)
leaves Ωc. Now by considering ε∗1 = min{ε1, ε2} and selecting
0 < ε ≤ ε∗1, it is valid to say that in the time interval [0, T (ε)],
(x(t), η(t)) enters Π and stays in the interior of Π for all
t ≥ T (ε). Thus, the trajectory (x(t), η(t)) is bounded for all
t ≥ T (ε). We see from (50) and (51) that (x(t), η(t)) is also
bounded for t ∈ [0, T (ε)], and this concludes the proof of (i).

As it was shown, by selecting 0 < ε ≤ ε∗1,
(51) is valid. Therefore, similar to the proof of Theo-
rem 1, one can get ‖θ̂(t)‖ ≤ ‖θ̂0‖ + k6

ε
λ+ 1

4λmax(P1)

with k6 = kk7γε
2(n−1)‖M1(0)‖‖η(0)‖ and k7 =√

λmax(P1)/λmin(P1). In addition, by considering a Lya-
punov function candidate Wi(ηi) = ηTi P1ηi, it can be obtained
that Ẇi(ηi) < 0 for ‖ηi‖ > 2εL1k7‖P1‖‖η(0)‖. Hence, θ̂ is
bounded and ηis are uniformly ultimately bounded. On the
other hand, since the boundedness of x(t) is guaranteed, x̂is
are also uniformly ultimately bounded.

The proof of (ii)-(iv) is similar to Theorem 2 and can be
found in [2]. �

Remark 6: The theorem states that the separation principle
proved for nonlinear systems and a single HGO is still valid
for the proposed MHGO. As a result, a globally bounded
state feedback controller and the proposed MHGO can be
employed to stabilize nonlinear systems. On the other hand,
as shown before, MHGO can provide better state estimations
than a single HGO. This means that MHGO can provide more
accurate state estimations for the controller which can result
in a more preferable performance.

IV. SIMULATION RESULTS

In this section, simulations are performed on two practical
systems, the Van der Pol oscillator and a robotics system. The
first example discusses the state estimation problem, and in
the second example, the output feedback control problem is
addressed.

A. Example 1

This simulation considers the state estimation problem of
the Van der Pol oscillator which is ẍ = −α2x+ β(1− x2)ẋ,
y = x with α = 1, β = 0.5, and the initial conditions
x(0) = 3 and ẋ(0) = 2 [2]. In order to represent the system
in the form of (1), one can choose x(1) = x, x(2) = ẋ,
and f(x) = −α2x(1) + β(1 − x2

(1))x(2). To estimate the
system states, a saturated version of f(x) is considered as

Time(s)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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2
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x̃
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x̃
o(1);γ = 105

x̃
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0 0.05 0.1
-10

-5

0

Fig. 1: State estimation error of Van der Pol oscillator using
MHGO and a single HGO.

f0(x̂o) = 200 tanh(f(x̂o)/200). Also, since N ≥ n + 1
observers are required, N = 3 observers with the initial condi-
tions of x̂1(0) =

[
+5 +5

]T
, x̂2(0) =

[
−5 +5

]T
, x̂3(0) =[

+5 −5
]T

, and the design parameters κ1 = 2, κ2 = 1,
and ε = 0.01 are utilized. Thus x(0) is in the convex hull
K of x̂i(0)s, and M(0)M(0)T has full rank. Moreover, the
initial values for estimating θ∗ are chosen as θ̂(0) = 0 and
P (0) = γI . As it was shown earlier, by choosing a large
enough γ, MHGO is able to provide better estimations. To
demonstrate that, γ = 102, γ = 105, and γ = 1010 are
employed for simulation. To investigate the performance of
MHGO, we compare its results to a single HGO. To provide
a reasonable comparison, f0 and the design parameters of the
HGO are selected the same as the MHGO, i.e., κis and ε.
Since different initial conditions result in different peaking
values, we set the initial condition of HGO equal to the
MHGO as x̂(0) =

∑3
i=1 α̂i(0)x̂i(0) =

[
+5 −5

]T
. The

obtained estimation errors using the single HGO and MHGO
are presented in Fig. 1. From this figure, we see that by
choosing a large enough γ, the proposed methodology yields a
faster convergence rate and smaller peaks in transient response.
To demonstrate the performance of MHGO in estimating θ∗,
the evolution of θ̂ needs to be compared to θ∗. In this regard,
one can calculate θ∗ by assuming x(0) is known and using
(8) at t = 0. The result of MHGO parameter estimation is
depicted in Fig. 2, and it can be seen than θ̂ converges to a
small vicinity of θ∗ when γ is selected large enough, which
is in accordance with Lemma 3.

For investigating the robustness of MHGO to measurement
noise, we assume that y is obtained from (33), where the high-
frequency measurement noise is ν = 10−2 sin(103t) [20]. The
observation errors of MHGO and a single HGO are depicted
in Fig. 3. As it was shown in Lemma 4, since there exists
noise in the output measurement, observation error converges
to an ultimate bound dependent on the noise, which is the same
for both MHGO and a single HGO. In addition, even though
choosing a large γ reduces the effect of initial observation
error, it can increase the effect of noise on transient response.
This trade-off can be easily seen in Fig. 3 where choosing
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Fig. 2: Performance of MHGO parameter estimation for Van
der Pol oscillator.
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Fig. 3: State estimation error of Van der Pol oscillator using
MHGO and a single HGO in the presence of noise.

γ = 105 made the obtained estimation more preferable in
comparison to a larger value, i.e., γ = 1010. Finally, we
present a simulation to illustrate the performance of MHGO
with resetting when abrupt output disturbances occur. The
disturbance ν is considered as follows

ν(t) =

{
1 if 0.1 ≤ t ≤ 0.2

0 otherwise

For determination of resetting time instants, the monitoring
signal ϑ with δ = 1 and ϑ̄ = 10−3 is used, and Fig.4 shows the
simulation results. It can be seen that when the MHGO is reset
(based on the monitoring signal), the estimation error x̃o(t−k )
is an initial estimation error for t ≥ t−k , and the transient
response is improved by choosing a large γ.

B. Example 2

This section evaluates the performance of output feedback
controllers using MHGO. In this regard, a single-link flexible

0 0.05 0.1 0.15 0.2 0.25 0.3

Time(s)
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0

1

2

0 0.05 0.1 0.15 0.2 0.25 0.3

Time(s)
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0

50

100

0.2 0.21 0.22 0.23 0.24
-20

-10

0

Fig. 4: State estimation error of Van der Pol oscillator using
MHGO with resetting and a single HGO in the presence of
abrupt disturbance.

joint manipulator with the following dynamic equation is
considered as a case study [26],

ẋ(1) = x(2)

ẋ(2) = −MgL

Ii
sinx(1) −

k

Ii
(x(1) − x(3))

ẋ(3) = x(4)

ẋ(4) =
k

J
(x(1) − x(3)) +

1

J
u

y = x(1)

(52)

where M =2kg is the Link mass, k =100N/m is the Joint
elastic constant, L =1m is the distance between rotation axis
and the link center of mass, g =9.8m/s2 is the gravitational
acceleration, Ii =0.5kg.m2 is the Link inertia moment, and
J =0.5kg.m2 is the Rotor inertia moment. The system can be
transformed into the canonical form ż = Az +Bf(z, u), y =
Cz [2], where z(1) = x(1), f(z, u) = φ(z) + ku/(IiJ), and

φ(z) =
MgL

Ii
sin z(1)

(
z2

(2) +
MgL

Ii
cos z(1) +

k

Ii

)
−
(
z(3) +

MgL

Ii
sin z(1)

)(
k

Ii
+
k

J
+
MgL

J
cos z(1)

)
.

The initial condition is z(0) =
[
−0.1 0 0.2 0

]T
. Assum-

ing full state measurement, the following controller stabilizes
the system and forces its output to track the desired trajectory

u(z) = 100 tanh(
IiJ

100k
(− φ(z)− 10z(1) − 19z(2)

− 13z(3) − 5z(4) + 10 sin t))
(53)

To estimate the state variables, we consider five HGOs
(N = 5) with f0(ẑo) = 200 tanh( 1

200 (φ(ẑo) + k
IiJ
u(ẑo)))

and the initial conditions ẑ1(0) = [−1,−1,+1,−1]T ,
ẑ2(0) = [−1,+1,−1,+1]T , ẑ3(0) = [+1,+1,+1,−1]T ,
ẑ4(0) = [+1,−1,−1,+1]T , and ẑ5(0) = [+1,−1,+1,+1]T .
Therefore, z(0) is in the convex hull K of ẑi(0)s , and
M(0)M(0)T has full rank. Furthermore, the design parameters
of the HGOs are selected as κ1 = 4, κ2 = 6, κ3 = 4, κ4 = 1,
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Fig. 5: Output and output error of the manipulator under
MHGO-based controller.
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Fig. 6: Output and output error of the manipulator under single
HGO-based controller.

and ε = 0.01. For obtaining an estimation of θ∗, the initial
values of θ̂(0) = 0 and P (0) = γI are employed.

The plant output for γ = 102 and γ = 1010 (y(t)), the plant
output under the state feedback controller (yr(t)), and the error
between yr(t) and y(t) (ỹr(t) = yr(t) − y(t)) are illustrated
in Fig. 5. We see that when γ is large, the output feedback
controller u(ẑo) recovers the performance of state feedback
controller. That is because by choosing a large γ, MHGO
provides more accurate state estimations for the controller.

As a comparison, the plant is also controlled using a single
HGO with the same f0, κis, ε, and initial condition, i.e.
ẑ(0) =

[
+1 −1 +1 +1

]T
. The simulation result (ys(t))

along with the error between yr(t) and ys(t) (ỹrs(t) =
yr(t) − ys(t)) are depicted in Fig. 6. By comparing Fig. 5
to Fig. 6, it can be clearly seen that the proposed MHGO-
based control strategy can reconstruct the behaviour of full
state-based control scheme more rapidly and accurately.

V. CONCLUSION

This paper deals with state estimation and control of a
class of nonaffine nonlinear systems. To address the peaking

phenomenon of HGOs, MHGO was presented that considers
state estimation as a convex combination of multiple HGOs.
It was shown that MHGO is stable and provides an accurate
state estimation with smaller peaks; also, its robustness to
measurement noise was investigated. Furthermore, a resetting
scheme was presented to attenuate peaking from sudden output
disturbances. The output feedback control problem was also
considered and it was shown that the separation principle is
valid for MHGO. As a result, one can employ MHGO along
with state feedback controller to stabilize the nonlinear system.
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APPENDIX

Proof of Lemma 3. (i) Since Assumption 1 holds, (11) can
be used to obtain M1(t)θ∗ + ηN (θ∗, t) = 0. Thus, from (19),
we have

η = M1θ̃ + σ(θ̂) (54)

where θ̃ = θ̂ − θ∗ and σ(θ̂) = ηN (θ̂)− ηN (θ∗). To prove (i),
we need to find an upper bound for the norm of η. Therefore,
it is required to find θ̃ and in this regard, (20) and (54) are
utilized to obtain

˙̃
θ = −ε2(n−1)PMT

1 C
TC(M1θ̃ + σ(θ̂)) (55)

Now by considering d(P−1θ̃)
dt = −P−1ṖP−1θ̃ + P−1 ˙̃

θ, (17),
and (55), we get d(P−1θ̃)

dt = −ε2(n−1)MT
1 C

TCσ(θ̂). By taking
the integral of this equation and premultiplying by P (t), θ̃(t)
can be obtained as follows

θ̃(t) = P (t)P (0)−1θ̃0

− ε2(n−1)P (t)

∫ t

0

M1(τ)TCTCσ(θ̂(τ), τ)dτ
(56)

In the preceding equation, it is required to obtain P (t). Toward
this end, dP−1

dt = −P−1ṖP−1 and (17) can be utilized to
get dP−1

dt = ε2(n−1)MT
1 C

TCM1. Taking the integral of this
equation and employing M1(t) = e

1
εA1tM1(0) results in

P (t) =
[
P (0)−1 + ε2(n−1)M1(0)TΓo(t)M1(0)

]−1

where Γo(t) =
∫ t

0
e

1
εA

T
1 τCTCe

1
εA1τdτ is the observabil-

ity Gramian corresponding to the observable pair (A1, C).
Hence Γo(t) is always positive definite. Now, by consid-
ering (56), it can be seen that one needs to calculate
P (t)P (0)−1 and ε2(n−1)P (t). Toward this end, the preceding
equation and P (0) = γI is used to obtain P (t)P (0)−1 =

[
I + γε2(n−1)M1(0)TΓo(t)M1(0)

]−1
. By employing the ma-

trix inversion lemma [27], we have

P (t)P (0)−1 = I −M1(0)T

×
( 1

γε2(n−1)
Γo(t)

−1 +M1(0)M1(0)T
)−1

M1(0)
(57)

Given Assumption 2, M1(0)M1(0)T is a full rank matrix.
Thus, we can get

( 1

γε2(n−1)
Γo(t)

−1+M1(0)M1(0)T
)−1

=
(
M1(0)M1(0)T

)−1

×
(
I +

1

γε2(n−1)
Γo(t)

−1(M1(0)M1(0)T )−1
)−1

(58)

Using the Neumann series [28], we can rewrite the above
equation and obtain the effect of γε2(n−1). Toward this end,
one has to show that there exists γ∗ > 0 such that for every
γ > γ∗, the following equation is satisfied

1

γε2(n−1)
‖Γo(t)−1(M1(0)M1(0)T )−1‖ < 1 (59)

In this regard, let γ = ξ/ε2(n−1) with the positive constant
ξ and ‖(M1(0)M1(0)T )−1‖ = k4. Moreover, since Γo(t) is
symmetric and positive definite, there exists a positive constant
k5 such that 0 < k5 ≤ λmin(Γo(t)); hence k5I ≤ Γo(t)
which results in Γo(t)

−1 ≤ 1
k5
I . In addition, since Γo(t) is a

symmetric matrix, similar to P (t) in the proof of Theorem 1,
it can be shown that ‖Γo(t)−1‖ ≤ 1

k5
; consequently, we have

1

γε2(n−1)
‖Γo(t)−1(M1(0)M1(0)T )−1‖ ≤ 1

ξ

k4

k5

As a result, by defining ξ∗ := k4
k5

and choosing ξ > ξ∗,
condition (59) will be satisfied. Now the Neumann series can
be employed to obtain

(
I +

1

γε2(n−1)
Γo(t)

−1(M1(0)M1(0)T )−1
)−1

=
∞∑
k=0

(−1)k

× (
1

ξ
)k
(
Γo(t)

−1(M1(0)M1(0)T )−1
)k

We use the above equation and (58) to rewrite (57) as

P (t)P (0)−1 = I −M1(0)T (M1(0)M1(0)T )−1M1(0)

+M1(0)T (M1(0)M1(0)T )−1G1(t)M1(0) (60)

with G1 =
∑∞
k=1(−1)k+1( 1

ξ )k(Γo(t)
−1(M1(0)M1(0)T )−1)k.

As it can be seen from (54) and (56), it is required to calculate
M1(t)P (t)P (0)−1 and ε2(n−1)M1(t)P (t). In this regard, we
employ (60) and M1(t) = e

1
εA1tM1(0) to obtain

M1(t)P (t)P (0)−1 = e
1
εA1tG1(t)M1(0) (61)

Because ε2(n−1)P (t) = γε2(n−1)P (t)P (0)−1, one can use
γε2(n−1) = ξ and (60) to get

ε2(n−1)M1(t)P (t) = e
1
εA1tΓo(t)

−1G2(t)

× (M1(0)M1(0)T )−1M1(0)
(62)
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with G2 =
∑∞
k=0(−1)k( 1

ξ )k((M1(0)M1(0)T )−1Γo(t)
−1)k. It

is worth noting that

‖G1(t)‖ ≤
∞∑
k=1

(
ξ∗

ξ
)k =

ξ∗

ξ − ξ∗

‖G2(t)‖ ≤
∞∑
k=0

(
ξ∗

ξ
)k =

ξ

ξ − ξ∗

(63)

Employing (56), (61), and (62), we obtain

M1(t)θ̃(t) = e
1
εA1tG1(t)M1(0)θ̃0

− e 1
εA1tΓo(t)

−1G2(t)

∫ t

0

e
1
εA

T
1 τCTCσ(θ̂(τ), τ)dτ

Then, one can use (28) and (63) to get

‖M1(t)θ̃(t)‖ ≤ k ξ∗

ξ − ξ∗
‖M1(0)θ̃0‖e−

λ
ε t

+
k2

k5

ξ

ξ − ξ∗
sup

0≤τ≤t
‖σ(θ̂(τ), τ)‖e−λε t

∫ t

0

e−
λ
ε τdτ

Since e−
λ
ε t ≤ 1 and e−

λ
ε t − e−2λε t ≤ 1/4, we can say

‖M1(t)θ̃(t)‖ ≤ k ξ∗

ξ − ξ∗
‖M1(0)θ̃0‖

+
k2

k5

ε

4λ

ξ

ξ − ξ∗
sup

0≤τ≤t
‖σ(θ̂(τ), τ)‖

(64)

For analyzing the above equation, we need to obtain the
supremum of ‖σ(θ̂)‖. Toward this end, we use Lemma 2
to conclude that εη̇N (θ∗) = A1ηN (θ∗). As a result, one
can use the definition of σ(θ̂) = ηN (θ̂) − ηN (θ∗) and get
σ̇(θ̂) = 1

εA1σ(θ̂) + B [f(x, u)− f0(x−Dη, u)]. Thus we
have

σ(θ̂(t), t) =e
1
εA1tσ(θ̂(0), 0) +

∫ t

τ=0

e
1
εA1(t−τ)B

× [f(x(τ), u(τ))− f0(x(τ)−Dη(τ), u(τ))] dτ

Moreover, from the definition of σ it can be seen that
σ( ˆθ(0), 0) = 0. Therefore, (24) and (28) are utilized to obtain

‖σ(θ̂(t), t)‖ ≤ kL1 sup
0≤τ≤t

‖η(τ)‖
∫ t

τ=0

e−
λ
ε (t−τ)dτ

≤ kL1
ε

λ
sup

0≤τ≤t
‖η(τ)‖

Since the right hand side of the preceding equation is non-
decreasing, we can employ the fact that the supremum of a
function is its least upper bound and derive

sup
0≤τ≤t

‖σ(θ̂(τ), τ)‖ ≤ kL1
ε

λ
sup

0≤τ≤t
‖η(τ)‖ (65)

Therefore, (54), (64), (65), and η(0) = M1(0)θ̃0 can be used
to get

‖η(t)‖ ≤ k ξ∗

ξ − ξ∗
‖η(0)‖

+ (
k2

k5

ε

4λ

ξ

ξ − ξ∗
+ 1)kL1

ε

λ
sup

0≤τ≤t
‖η(τ)‖

It can be seen that the right hand side of the preceding equation
is nondecreasing, therefore, it is also greater than or equal to

sup ‖η(τ)‖ for 0 ≤ τ ≤ t. Moreover, there exist some ξ∗1 > ξ∗

and ε∗1 > 0 such that for ξ > ξ∗1 and 0 < ε < ε∗1, we have
1− (k

2

k5
ε

4λ
ξ

ξ−ξ∗ + 1)kL1
ε
λ > 0. Thus, one can write

sup
0≤τ≤t

‖η(τ)‖ ≤
k ξ∗

ξ−ξ∗ ‖η(0)‖
1− (k

2

k5
ε

4λ
ξ

ξ−ξ∗ + 1)kL1
ε
λ

(66)

On the other hand, from (14) it is obtained

ε2(n−1)‖η‖2 ≤ ‖x̃o‖2 ≤ ‖η‖2 (67)

Finally, the above equation and (66) result in

sup
0≤τ≤t

‖x̃o(τ)‖ ≤
k 1
εn−1

ξ∗

ξ−ξ∗ ‖x̃o(0)‖
1− (k

2

k5
ε

4λ
ξ

ξ−ξ∗ + 1)kL1
ε
λ

(68)

For comparison, we need to employ a similar approach for
a single HGO. For that, by considering (3) and (7), we see that
state estimation obtained from (4) and (5) with fixed αis is
equal to the estimation of a single HGO. Therefore, a single
HGO with the initial condition of x̂(0) =

∑N
i=1 α̂i(0)x̂i(0)

performs like an MHGO with the same initial condition and
fixed α̂is, i.e., x̂(t) =

∑N
i=1 α̂i(0)x̂i(Λ, t). Hence, the scaled

state estimation error of a single HGO, ηs = D(ε)−1x̃, is

ηs(t) = M1(t)θ̃0 + σ(θ̂0, t)

where σ(θ̂0, t) = ηN (θ̂0, t) − ηN (θ∗, t). Note that in the
preceding equation θ̂ is fixed, i.e., θ̃(t) = θ̃0. By using a
similar approach to MHGO and ηs(0) = M1(0)θ̃0, we get

‖M1(t)θ̃(0)‖ ≤ k‖ηs(0)‖

sup
0≤τ≤t

‖σ(θ̂0, τ)‖ ≤ kL1
ε

λ
sup

0≤τ≤t
‖ηs(τ)‖

Therefore, by choosing ε similar to MHGO, one can obtain the
following equation for the estimation error of a single HGO

sup
0≤τ≤t

‖x̃(τ)‖ ≤
k 1
εn−1 ‖x̃(0)‖
1− kL1

ε
λ

(69)

By comparing (68) and (69) and using x̃o(0) = x̃(0), it can be
seen that by choosing ξ large enough, when ε tends to zero, the
transient estimation errors obtained from MHGO and a single
HGO can peak to O(‖x̃o(0)‖/(ξεn−1)) and O(‖x̃(0)‖/εn−1),
respectively, and this completes the proof of (i).

(ii) Since N = n + 1 and M1(0)M1(0)T has full rank,
the matrix M1(0) ∈ Rn×(N−1) is invertible. Therefore, (60)
becomes

P (t)P (0)−1 = M1(0)TG(t)M1(0)−T (70)

with G =
∑∞
k=1(−1)k+1( 1

ξ )k
(
(M1(0)M1(0)T )−1Γo(t)

−1
)k

.
Also, using ε2(n−1)P (t) = ξP (t)P (0)−1 and (70), one has

ε2(n−1)P (t)M1(0)T = ξM1(0)TG(t) (71)

Note that similar to (63), we have ‖G(t)‖ ≤ ξ∗/(ξ − ξ∗).
Thus, (56), (28), (70), and (71) can be utilized to get

‖θ̃(t)‖ ≤ ξ∗

ξ − ξ∗
‖θ̃0‖

+ k
ε

λ
‖M1(0)‖ ξξ∗

ξ − ξ∗
sup

0≤τ≤t
‖σ(θ̂(τ), τ)‖

(72)
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On the other hand, we use (65), (54), and (28) to get

sup
0≤τ≤t

‖σ(θ̂(τ), τ)‖ ≤ k2L1
ε

λ
‖M1(0)‖ sup

0≤τ≤t
‖θ̃(τ)‖

+ kL1
ε

λ
sup

0≤τ≤t
‖σ(θ̂(τ), (τ))‖

Hence, if ε∗ := λ/(KL1) and ε < ε∗, we have

sup
0≤τ≤t

‖σ(θ̂(τ), τ)‖ ≤ k2L1‖M1(0)‖ ε

λ− kL1ε
sup

0≤τ≤t
‖θ̃(τ)‖

Using the preceding equation, (72) can be obtained as follows

‖θ̃(t)‖ ≤ ξ∗

ξ − ξ∗
‖θ̃0‖

+ k3L1‖M1(0)‖2 ξξ∗

ξ − ξ∗
ε2

λ(λ− kL1ε)
sup

0≤τ≤t
‖θ̃(τ)‖

(73)

There exist ξ∗2 > ξ∗ and ε∗2 < ε∗ such that by selecting ξ > ξ∗2
and 0 < ε < ε∗2, one has 1−k3L1‖M1(0)‖2 ξξ∗

ξ−ξ∗
ε2

λ(λ−kL1ε)
>

0. Also, since the right hand side of (73) is nondecreasing,
it is also greater than or equal to sup ‖θ̃(τ)‖ for 0 ≤ τ ≤ t;
thus,

sup
0≤τ≤t

‖θ̃(τ)‖ ≤
ξ∗

ξ−ξ∗ ‖θ̃0‖
1− k3L1‖M1(0)‖2 ξξ∗

ξ−ξ∗
ε2

λ(λ−kL1ε)

As a result, ‖θ̃(t)‖ is less than or equal to O(‖θ̃0‖/ξ) when
ξ and ε are selected large and small enough, respectively. �

Proof of Lemma 4. Considering the effect of noise as (33),
we see that in (15)-(18), only (16) and (18) need modification
as

˙̂
θ = −εn−1PMT

1 C
T (εn−1Cη + ν) (74)

η̇i(θ̂) =
1

ε
A1ηi(θ̂)

+B[f(x, u)− f0(x−D(ε)η, u)]− 1

εn
H1ν (75)

where H1 =
[
κ1 · · · κn

]T
. Note that the effect of ν on ηis

is similar; therefore, since the ith column of M1 is ηi(θ̂) −
ηN (θ̂), M1 does not depend on ν and (21) is valid. One can
take the derivative of (15) and use (21), (74), and (75) to obtain

η̇ =
1

ε
A1η − ε2(n−1)M1PM

T
1 C

TCη

+B[f(x, u)− f0(x−D(ε)η, u)]

− εn−1M1PM
T
1 C

T ν − 1

εn
H1ν

(76)

We perform the proof using stability analysis of perturbed
systems with non-vanishing perturbation [2]. Let the Lyapunov
function candidate V (η) = ηTP1η with AT1 P1 +P1A1 = −I .
Then, we employ (76) to get

V̇ (η) = −1

ε
ηT η − 2ε2(n−1)ηTP1M1PM

T
1 C

TCη

+ 2ηTP1B[f(x, u)− f0(x−D(ε)η, u)]

− 2εn−1ηTP1M1PM
T
1 C

T ν − 2

εn
ηTP1H1ν

By considering (17), (21), and (28), we have ‖M1(t)‖ ≤
k‖M1(0)‖e−λε t and ‖P (t)‖ ≤ γ. Therefore, (24) and ‖ν‖ ≤ µ
can be utilized to obtain

V̇ (η) ≤ (−1

ε
+ ρ1γε

2(n−1) + 2L1‖P1‖)‖η‖2

+ (ρ1γε
n−1e−2λε t +

ρ2

εn
)µ‖η‖

(77)

where ρ1 = 2k2‖P1‖‖M1(0)‖2 and ρ2 = 2‖P1‖‖H1‖. There
exists ε∗ > 0 such that by selecting 0 < ε ≤ ε∗, one has
ρ1γε

2(n−1) + 2L1‖P1‖ ≤ 1
2ε . Consequently, it is obtained

V̇ (η) ≤ − 1
2ε‖η‖

2 + (ρ1γε
n−1e−2λε t + ρ2

εn )µ‖η‖, and by
employing (29), we have

V̇ (η) ≤ − V (η)

2ελmax(P1)
+ (ρ1γε

n−1e−2λε t +
ρ2

εn
)
µ
√
V (η)√

λmin(P1)

To proceed with the analysis, it is needed to convert the preced-
ing equation into a linear differential inequality and employ
the Comparison Lemma [2]. For that, let W (t) =

√
V (t);

hence, for V (t) 6= 0, Ẇ = V̇ /(2
√
V ) can be used to get

Ẇ ≤ − W

4ελmax(P1)
+ (ρ1γε

n−1e−2λε t +
ρ2

εn
)

µ

2
√
λmin(P1)

(78)
In order to use the comparison lemma, we need to show
that the upper right hand derivative D+W (t) satisfies (78).
If V (t) 6= 0, W (t) is differentiable, and in turn, D+W (t) =
Ẇ (t). To show that D+W (t) satisfies (78) when V (t) = 0,
using W (t) =

√
V (t) = 0, it is required to show

D+W (t) ≤ (ρ1γε
n−1e−2λε t +

ρ2

εn
)

µ

2
√
λmin(P1)

(79)

In this regard, let the definition of the upper right hand
derivative D+W (t) = lim suph→0+

W (t+h)−W (t)
h . Note that

since V (t) = 0, we have W (t) = 0 and η(t) = 0. Therefore,
by using (29), one has

D+W (t) ≤ lim sup
h→0+

√
λmax(P1)

h
‖η(t+ h)‖ (80)

Also, one can use the Taylor series, η(t) = 0, and (76) to get

‖η(t+ h)‖ ≤ h‖ − εn−1M1PM
T
1 C

T ν − 1

εn
H1ν‖

+ h2‖
∞∑
k=2

hk−2

k!
η(k)(t)‖

Employing the upper bounds of ‖P‖, ‖M1‖, and ‖ν‖ together
with the definitions of ρ1 and ρ2 in (77), we have

‖η(t+ h)‖ ≤ h(ρ1γε
n−1e−2λε t +

ρ2

εn
)

µ

2‖P1‖

+ h2‖
∞∑
k=2

hk−2

k!
η(k)(t)‖

By using the preceding equation and (80), it can be obtained

D+W (t) ≤
√
λmax(P1)(ρ1γε

n−1e−2λε t +
ρ2

εn
)

µ

2‖P1‖

Since ‖P1‖ = λmax(P1) and
√
λmin(P1) ≤

√
λmax(P1), it

can be concluded from the previous equation that (79) is valid.
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Therefore, D+W (t) satisfies (78), and using the comparison
lemma, the following equation can be obtained

W (t) ≤ e−
1

4ελmax(P1)
t
W (0)

+

∫ t

0

e
− t−τ

4ελmax(P1) (ρ1γε
n−1e−2λε τ +

ρ2

εn
)

µ

2
√
λmin(P1)

dτ

By calculating the integral and using the definition λ =
1/(2λmax(P1)), we have

W (t) ≤ e− λ
2ε tW (0) +

[1

3
ρ1γε

n(e−
λ
2ε t − e−2λε t)

+
ρ2

εn−1
(1− e− λ

2ε t)
] 2λmax(P1)√

λmin(P1)
µ

Finally, (34) can be obtained by employing the preceding
equation,

√
λmin(P1)‖η‖ ≤ W ≤

√
λmax(P1)‖η‖, (67), and

the following definitions.

k1 =

√
λmax(P1)√
λmin(P1)

, k2 = ρ1
2λmax(P1)

3λmin(P1)
, k3 = ρ2

2λmax(P1)

λmin(P1)

(81)

�
Proof of Lemma 5. First, we consider the proposed scheme

between two resetting time instants tk−1 and tk. During
this time interval [tk−1, tk), the conditions of Lemma 4 are
satisfied, and (76) is valid. Analogous to the proof of Lemma 4,
one can obtain

W (t) ≤ e− λ
2ε (t−tk−1)W (tk−1)

+
[1

3
ρ1γε

n(e−
λ
2ε (t−tk−1) − e−2λε (t−tk−1))

+
ρ2

εn−1
(1− e− λ

2ε (t−tk−1))
] 2λmax(P1)√

λmin(P1)
µ

(82)

where t ∈ [tk−1, tk). At t = tk, MHGO is re-initialized using
(35) such that x̂o(tk) = x̂o(t

−
k ). As a result, we have η(tk) =

η(t−k ) and W (tk) = W (t−k ). By exploiting this equality and
(82), it is obtained

W (t) ≤ e− λ
2ε tW (0)

+
{ k−1∑
j=1

e−
λ
2ε (t−tj)

[1

3
ρ1γε

n(e−
λ
2ε (tj−tj−1) − e−2λε (tj−tj−1))

+
ρ2

εn−1
(1− e− λ

2ε (tj−tj−1))
]

+
1

3
ρ1γε

n(e−
λ
2ε (t−tk−1) − e−2λε (t−tk−1))

+
ρ2

εn−1
(1− e− λ

2ε (t−tk−1))
} 2λmax(P1)√

λmin(P1)
µ

The proof is concluded by employing the definitions of k1,
k2, and k3 as (81). �
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